Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Antioxidant function of thioredoxin and glutaredoxin systems.

Identifieur interne : 001078 ( Main/Exploration ); précédent : 001077; suivant : 001079

Antioxidant function of thioredoxin and glutaredoxin systems.

Auteurs : A. Holmgren [Suède]

Source :

RBID : pubmed:11213485

Descripteurs français

English descriptors

Abstract

Selenium is an essential trace element with known antioxidant properties. Cytosolic thioredoxin reductase from mammalian cells is a dimeric flavin enzyme comprising a glutathione reductase-like equivalent elongated with 16 residues including the conserved carboxy-terminal sequence, Gly-Cys-SeCys-Gly, where SeCys is selenocysteine. Replacement of the SeCys residue by Cys in rat cytosolic thioredoxin reductase using site-directed mutagenesis and expression in Escherichia coli resulted in a functional mutant enzyme having about one percent activity with thioredoxin as a substrate through a major loss of Kcat and a shift in the pH optimum from 7 to 9. The truncated enzyme expected in selenium deficiency by the UGA mRNA codon for SeCys acting as a stop codon was also expressed. This enzyme lacking the carboxy-terminal SeCys-Gly dipeptide contained FAD but was inactive because the SeCys selenol is in the active site. These results show that selenium is essential for the activity of thioredoxin reductase, explaining why this trace element is required for cell proliferation by effects on thioredoxin-dependent control of the intracellular redox state, ribonucleotide reductase production of deoxyribonucleotides, or activation of transcription factors. The selenazol drug ebselen (2-phenyl-1,2 benzisoselenazol-3 (2H)-one) is a known glutathione (GSH) peroxidase mimic with antioxidant properties. The hydrogen peroxide reductase activity of human thioredoxin reductase was stimulated 15-fold by 2 microM ebselen. Glutaredoxins protect against oxidative stress by catalyzing reduction of protein mixed disulfides with GSH. The mechanism of glutaredoxins as efficient general GSH-mixed disulfide oxidoreductases may protect proteins from inactivation as well as play a major role in general redox signaling.

DOI: 10.1089/ars.2000.2.4-811
PubMed: 11213485


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Antioxidant function of thioredoxin and glutaredoxin systems.</title>
<author>
<name sortKey="Holmgren, A" sort="Holmgren, A" uniqKey="Holmgren A" first="A" last="Holmgren">A. Holmgren</name>
<affiliation wicri:level="1">
<nlm:affiliation>Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden. arne.holmgren@mbb.ki.se</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm</wicri:regionArea>
<wicri:noRegion>S-171 77 Stockholm</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2000">2000</date>
<idno type="RBID">pubmed:11213485</idno>
<idno type="pmid">11213485</idno>
<idno type="doi">10.1089/ars.2000.2.4-811</idno>
<idno type="wicri:Area/Main/Corpus">001043</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001043</idno>
<idno type="wicri:Area/Main/Curation">001043</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001043</idno>
<idno type="wicri:Area/Main/Exploration">001043</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Antioxidant function of thioredoxin and glutaredoxin systems.</title>
<author>
<name sortKey="Holmgren, A" sort="Holmgren, A" uniqKey="Holmgren A" first="A" last="Holmgren">A. Holmgren</name>
<affiliation wicri:level="1">
<nlm:affiliation>Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden. arne.holmgren@mbb.ki.se</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm</wicri:regionArea>
<wicri:noRegion>S-171 77 Stockholm</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Antioxidants & redox signaling</title>
<idno type="ISSN">1523-0864</idno>
<imprint>
<date when="2000" type="published">2000</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Antioxidants (metabolism)</term>
<term>Antioxidants (pharmacology)</term>
<term>Azoles (pharmacology)</term>
<term>Base Sequence (MeSH)</term>
<term>DNA, Complementary (genetics)</term>
<term>Gene Expression (MeSH)</term>
<term>Glutaredoxins (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Organoselenium Compounds (pharmacology)</term>
<term>Oxidoreductases (MeSH)</term>
<term>Proteins (metabolism)</term>
<term>Rats (MeSH)</term>
<term>Selenium (metabolism)</term>
<term>Selenocysteine (metabolism)</term>
<term>Thioredoxin-Disulfide Reductase (chemistry)</term>
<term>Thioredoxin-Disulfide Reductase (genetics)</term>
<term>Thioredoxin-Disulfide Reductase (metabolism)</term>
<term>Thioredoxins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN complémentaire (génétique)</term>
<term>Animaux (MeSH)</term>
<term>Antioxydants (métabolisme)</term>
<term>Antioxydants (pharmacologie)</term>
<term>Azoles (pharmacologie)</term>
<term>Composés organiques du sélénium (pharmacologie)</term>
<term>Expression des gènes (MeSH)</term>
<term>Glutarédoxines (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Oxidoreductases (MeSH)</term>
<term>Protéines (métabolisme)</term>
<term>Rats (MeSH)</term>
<term>Sélénium (métabolisme)</term>
<term>Sélénocystéine (métabolisme)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Thioredoxin-disulfide reductase (composition chimique)</term>
<term>Thioredoxin-disulfide reductase (génétique)</term>
<term>Thioredoxin-disulfide reductase (métabolisme)</term>
<term>Thiorédoxines (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Complementary</term>
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antioxidants</term>
<term>Proteins</term>
<term>Selenium</term>
<term>Selenocysteine</term>
<term>Thioredoxin-Disulfide Reductase</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antioxidants</term>
<term>Azoles</term>
<term>Organoselenium Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Thioredoxin-disulfide reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN complémentaire</term>
<term>Thioredoxin-disulfide reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Antioxydants</term>
<term>Protéines</term>
<term>Sélénium</term>
<term>Sélénocystéine</term>
<term>Thioredoxin-disulfide reductase</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antioxydants</term>
<term>Azoles</term>
<term>Composés organiques du sélénium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Base Sequence</term>
<term>Gene Expression</term>
<term>Glutaredoxins</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Oxidoreductases</term>
<term>Rats</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Expression des gènes</term>
<term>Glutarédoxines</term>
<term>Humains</term>
<term>Modèles moléculaires</term>
<term>Oxidoreductases</term>
<term>Rats</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Selenium is an essential trace element with known antioxidant properties. Cytosolic thioredoxin reductase from mammalian cells is a dimeric flavin enzyme comprising a glutathione reductase-like equivalent elongated with 16 residues including the conserved carboxy-terminal sequence, Gly-Cys-SeCys-Gly, where SeCys is selenocysteine. Replacement of the SeCys residue by Cys in rat cytosolic thioredoxin reductase using site-directed mutagenesis and expression in Escherichia coli resulted in a functional mutant enzyme having about one percent activity with thioredoxin as a substrate through a major loss of Kcat and a shift in the pH optimum from 7 to 9. The truncated enzyme expected in selenium deficiency by the UGA mRNA codon for SeCys acting as a stop codon was also expressed. This enzyme lacking the carboxy-terminal SeCys-Gly dipeptide contained FAD but was inactive because the SeCys selenol is in the active site. These results show that selenium is essential for the activity of thioredoxin reductase, explaining why this trace element is required for cell proliferation by effects on thioredoxin-dependent control of the intracellular redox state, ribonucleotide reductase production of deoxyribonucleotides, or activation of transcription factors. The selenazol drug ebselen (2-phenyl-1,2 benzisoselenazol-3 (2H)-one) is a known glutathione (GSH) peroxidase mimic with antioxidant properties. The hydrogen peroxide reductase activity of human thioredoxin reductase was stimulated 15-fold by 2 microM ebselen. Glutaredoxins protect against oxidative stress by catalyzing reduction of protein mixed disulfides with GSH. The mechanism of glutaredoxins as efficient general GSH-mixed disulfide oxidoreductases may protect proteins from inactivation as well as play a major role in general redox signaling.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11213485</PMID>
<DateCompleted>
<Year>2001</Year>
<Month>03</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1523-0864</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>2</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2000</Year>
<Season>Winter</Season>
</PubDate>
</JournalIssue>
<Title>Antioxidants & redox signaling</Title>
<ISOAbbreviation>Antioxid Redox Signal</ISOAbbreviation>
</Journal>
<ArticleTitle>Antioxidant function of thioredoxin and glutaredoxin systems.</ArticleTitle>
<Pagination>
<MedlinePgn>811-20</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Selenium is an essential trace element with known antioxidant properties. Cytosolic thioredoxin reductase from mammalian cells is a dimeric flavin enzyme comprising a glutathione reductase-like equivalent elongated with 16 residues including the conserved carboxy-terminal sequence, Gly-Cys-SeCys-Gly, where SeCys is selenocysteine. Replacement of the SeCys residue by Cys in rat cytosolic thioredoxin reductase using site-directed mutagenesis and expression in Escherichia coli resulted in a functional mutant enzyme having about one percent activity with thioredoxin as a substrate through a major loss of Kcat and a shift in the pH optimum from 7 to 9. The truncated enzyme expected in selenium deficiency by the UGA mRNA codon for SeCys acting as a stop codon was also expressed. This enzyme lacking the carboxy-terminal SeCys-Gly dipeptide contained FAD but was inactive because the SeCys selenol is in the active site. These results show that selenium is essential for the activity of thioredoxin reductase, explaining why this trace element is required for cell proliferation by effects on thioredoxin-dependent control of the intracellular redox state, ribonucleotide reductase production of deoxyribonucleotides, or activation of transcription factors. The selenazol drug ebselen (2-phenyl-1,2 benzisoselenazol-3 (2H)-one) is a known glutathione (GSH) peroxidase mimic with antioxidant properties. The hydrogen peroxide reductase activity of human thioredoxin reductase was stimulated 15-fold by 2 microM ebselen. Glutaredoxins protect against oxidative stress by catalyzing reduction of protein mixed disulfides with GSH. The mechanism of glutaredoxins as efficient general GSH-mixed disulfide oxidoreductases may protect proteins from inactivation as well as play a major role in general redox signaling.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Holmgren</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden. arne.holmgren@mbb.ki.se</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Antioxid Redox Signal</MedlineTA>
<NlmUniqueID>100888899</NlmUniqueID>
<ISSNLinking>1523-0864</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000975">Antioxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001393">Azoles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516010">Glrx2 protein, rat</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016566">Organoselenium Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0CH9049VIS</RegistryNumber>
<NameOfSubstance UI="D017279">Selenocysteine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>40X2P7DPGH</RegistryNumber>
<NameOfSubstance UI="C042986">ebselen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="D013880">Thioredoxin-Disulfide Reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>H6241UJ22B</RegistryNumber>
<NameOfSubstance UI="D012643">Selenium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000975" MajorTopicYN="N">Antioxidants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001393" MajorTopicYN="N">Azoles</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016566" MajorTopicYN="N">Organoselenium Compounds</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="Y">Oxidoreductases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012643" MajorTopicYN="N">Selenium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017279" MajorTopicYN="N">Selenocysteine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013880" MajorTopicYN="N">Thioredoxin-Disulfide Reductase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<NumberOfReferences>58</NumberOfReferences>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2001</Year>
<Month>2</Month>
<Day>24</Day>
<Hour>12</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2001</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2001</Year>
<Month>2</Month>
<Day>24</Day>
<Hour>12</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11213485</ArticleId>
<ArticleId IdType="doi">10.1089/ars.2000.2.4-811</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<country name="Suède">
<noRegion>
<name sortKey="Holmgren, A" sort="Holmgren, A" uniqKey="Holmgren A" first="A" last="Holmgren">A. Holmgren</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001078 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001078 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:11213485
   |texte=   Antioxidant function of thioredoxin and glutaredoxin systems.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:11213485" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020